Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Liang-Zhong Xu,* Guo-Dong Si, Zai-Feng Li, Guan-Ping Yu and Yong-Wei Huang

College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China

Correspondence e-mail: qknhs@163169.net

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.049$
$w R$ factor $=0.134$
Data-to-parameter ratio $=18.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

2-(4-Methylbenzoyl)-N-phenyl-2-(1H-1,2,4-triazol-1-yl)ethanethioamide

The title compound, $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{OS}$, crystallizes in space group $P 2_{1} / n$ with two independent molecules in the asymmetric unit. The bond lengths and angles in both molecules are within normal ranges. There are some weak intermolecular hydrogen-bond interactions in the crystal structure, providing stabilization.

Comment

As a type of fungicide, triazole compounds are highly efficient, of low toxicity, low inward absorbence (Xu et al., 2004), and show plant growth regulator activities (Xu et al., 2002). Owing to their important biological activities, these compounds have received a great deal of attention in respect of their syntheses and in the elucidation of their crystal structures. In the search for new triazole compounds with higher biological activities, the title compound, (I), was synthesized.

(I)

Compound (I) crystallizes with two independent molecules in the asymmetric unit (Fig. 1). The bond lengths and angles in both molecules are in agreement with those reported for similar compounds with benzene and triazole rings (Jian et al., 2004). The $\mathrm{C}=\mathrm{S}$ distance is $0.03 \AA$ shorter than the mean value of 1.660 Å reported by Allen et al. (1987). Atoms C2 and C20 lie in the planes of the $\mathrm{N} 2 / \mathrm{N} 3 / \mathrm{C} 18 / \mathrm{N} 4 / \mathrm{C} 17$ and N6/N7/ C36/N8/C35 triazole rings, respectively. Atoms N1 and N5 lie in the plane of the C11-C16 and C29-C34 benzene rings, respectively.

The most interesting structural feature is the occurrence of weak intermolecular hydrogen-bond interactions involving atoms N4 and N8 of the triazole rings, resulting in the formation of zigzag chains parallel to the b axis (Table 2 and Fig. 2).

Experimental

The title compound was prepared by the reaction of 1-p-tolyl-2-(1 H -1,2,4-triazol-1-yl)ethanone ($4.02 \mathrm{~g}, 0.02 \mathrm{~mol}$), phenyl isothiocyanate $(2.24 \mathrm{~g}, 0.02 \mathrm{~mol})$ and potassium hydroxide $(2.24 \mathrm{~g}, 0.04 \mathrm{~mol})$ in $1,4-$ dioxane solution (30 ml) at room temperature. Single crystals of the

Received 10 January 2005 Accepted 31 January 2005 Online 5 February 2005
title compound suitable for X-ray measurements were obtained by recrystallization from ethanol at room temperature.

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{OS}$

$M_{r}=336.41$
Monoclinic, $P 2_{1} / n$
$a=16.151$ (2) A
$b=11.9923$ (14) \AA
$c=18.094$ (2) A
$\beta=109.261$ (2) ${ }^{\circ}$
$V=3308.4(7) \mathrm{A}^{3}$
$Z=8$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.939, T_{\max }=0.967$
21974 measured reflections
$D_{x}=1.351 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Mo $K \alpha$ radiation
Cell parameters from 2352
reflections
$\theta=2.2-21.0^{\circ}$
$\mu=0.21 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, yellow
$0.22 \times 0.18 \times 0.16 \mathrm{~mm}$

7912 independent reflections
4310 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.043$
$\theta_{\text {max }}=27.9^{\circ}$
$h=-13 \rightarrow 21$
$k=-15 \rightarrow 15$
$l=-23 \rightarrow 21$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0569 P)^{2}\right. \\
& +0.1446 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.27 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.30 \mathrm{e}^{-3} \\
& \text { Extinction correction: none }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

S1-C1			
S2-C19	$1.6308(19)$	N5-C19	$1.331(2)$
N1-C1	$1.638(2)$	N5-C29	$1.428(3)$
N1-C11	$1.328(2)$	O1-C3	$1.212(2)$
	$1.430(2)$	O2-C21	$1.212(2)$
C1-N1-C11			
C19-N5-C29	$124.61(16)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1$	$120.13(14)$
N1-C1-S1	$128.97(17)$	$\mathrm{N} 5-\mathrm{C} 19-\mathrm{S} 2$	$127.58(16)$
	$127.15(15)$	$\mathrm{C} 20-\mathrm{C} 19-\mathrm{S} 2$	$118.43(14)$
C11-N1-C1-C2	$-177.16(18)$	$\mathrm{C} 29-\mathrm{N} 5-\mathrm{C} 19-\mathrm{S} 2$	
$\mathrm{C} 11-\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 1$	$3.6(3)$	$\mathrm{C} 35-\mathrm{N} 6-\mathrm{C} 20-\mathrm{C} 21$	$-40.3(3)$

Table 2
Hydrogen-bond geometry ($\left({ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{~N}^{\mathrm{i}}$	0.86	2.20	$3.012(2)$	158
$\mathrm{C} 2-\mathrm{H} 2 A \cdots \mathrm{~N} 4^{\mathrm{i}}$	0.98	2.58	$3.487(3)$	153
$\mathrm{~N} 5-\mathrm{H} 5 A \cdots \mathrm{~N} \mathrm{~B}^{\mathrm{ii}}$	0.86	2.26	$3.117(2)$	174
$\mathrm{C} 20-\mathrm{H} 20 A \cdots \mathrm{~N} 8^{\mathrm{ii}}$	0.98	2.79	$3.686(3)$	152
Symmetry codes: $(\mathrm{i})-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{1}{2} ;($ (ii $)-x+\frac{3}{2}, y+\frac{1}{2},-z+\frac{1}{2}$.				

All H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.98 \AA$ and $\mathrm{N}-\mathrm{H}$ distances fixed at $0.86 \AA$, and included in the final cycles of refinement using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (parent atom).

Figure 1
View of the asymmetric unit of the title compound, (I), with displacement ellipsoids drawn at the 40% probability level.

Figure 2
Packing in (I), showing the hydrogen-bonding interactions (dashed lines) involving one independent molecule.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Jian, F. F., Xiao, H. L., Qin, Y. Q. \& Xu, L. Z. (2004). Acta Cryst. C60, o492o493.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Xu, L. Z., Jian, F. F., Shi, J. G., Sun, P. P.\& Jiao, K. (2004). Chin. J. Chem. 22, 698-701.
Xu, L. Z., Jiao, K., Zhang, S. S. \& Kuang, S. P. (2002). Bull. Korean Chem. Soc. 23, 1699-1701.

